Пользователи Twitter подвержены эмоциональному заражению — исследование
Пользователи соцсети в той же мере подвержены эмоциональному заражению, как и люди в толпе. Эмоции могут передаваться и без непосредственного физического присутствия людей, показали данные исследования.
Исследователи из Индианского университета в Блумингтоне и Университета Южной Калифорнии обнаружили, что количество негативных или позитивных твитов в ленте пользователя Twitter способно повлиять на эмоциональную окраску его последующих твитов, сообщил сайт N+1 со ссылкой на журнал PLoS ONE.
Иными словами, пользователи этой социальной сети в той же мере подвержены эмоциональному заражению, как и люди в толпе, а для возникновения этого феномена не требуется наблюдения и синхронизации невербальных проявлений эмоций.
Ученые отобрали выборку из 3800 пользователей Twitter, которые сделали хотя бы один твит на протяжении недели в сентябре 2014 года. Вся совокупность их твитов за эту неделю составила первый набор данных.
Затем ученые сформировали вторую выборку из пользователей, на которых был подписан каждый участник первой выборки. Из всей совокупности твитов второй выборки исследователи отобрали те, которые предшествовали в течение часа каждому из твитов представителей первой выборки. Таким образом, можно было отследить — влияют ли твиты одних пользователей, на содержание твитов их фолловеров.
На втором этапе все твиты (содержащие исключительно текстовую информацию, то есть без URLs, фотографий и видео) изучались посредством метода анализа тональности текстов (сентимент-анализ). С его помощью можно определить мнения авторов твитов по отношению к каким-либо объектам или ситуациям, и соответственно, выявить три типа оценок: позитивные, негативные и нейтральные. В данном случае исследователи использовали алгоритм SentiStrength, который специально предназначен для анализа коротких сообщений, включающих сокращения, аббревиатуры, слэнг, эмотиконы (пиктограмма, изображающая эмоцию, — ред.) и прочее.
Затем исследователи определяли — к какой из трех пропорций относится каждая конкретная совокупность твитов, предшествующая в течение часа каждому твиту пользователя из первой выборки. После чего отбирали те, которые были охарактеризованы как негативные и как позитивные. Финальной процедурой стало выявление зависимости между эмоциональной окраской твитов первой группы пользователей от предшествовавших им твитов.
Выяснилось, что если в течение часа пользователь мог видеть в своей ленте твиты на 4,34% превышающие пороговое значение негативных твитов (то есть можно сказать, что лента была более негативной), то он с высокой вероятностью также постил негативный твит.
Для позитивных твитов пропорция должна была сдвинуться на 4,5%, тогда пользователь вслед за другими также постил позитивный твит. При этом коэффициент корреляции между эмоциональной окраской предыдущих твитов (позитивной или негативной) и твита-реакции был очень высокий (R2=0,975).
Исследователи из Индианского университета в Блумингтоне и Университета Южной Калифорнии обнаружили, что количество негативных или позитивных твитов в ленте пользователя Twitter способно повлиять на эмоциональную окраску его последующих твитов, сообщил сайт N+1 со ссылкой на журнал PLoS ONE.
Иными словами, пользователи этой социальной сети в той же мере подвержены эмоциональному заражению, как и люди в толпе, а для возникновения этого феномена не требуется наблюдения и синхронизации невербальных проявлений эмоций.
Ученые отобрали выборку из 3800 пользователей Twitter, которые сделали хотя бы один твит на протяжении недели в сентябре 2014 года. Вся совокупность их твитов за эту неделю составила первый набор данных.
Затем ученые сформировали вторую выборку из пользователей, на которых был подписан каждый участник первой выборки. Из всей совокупности твитов второй выборки исследователи отобрали те, которые предшествовали в течение часа каждому из твитов представителей первой выборки. Таким образом, можно было отследить — влияют ли твиты одних пользователей, на содержание твитов их фолловеров.
На втором этапе все твиты (содержащие исключительно текстовую информацию, то есть без URLs, фотографий и видео) изучались посредством метода анализа тональности текстов (сентимент-анализ). С его помощью можно определить мнения авторов твитов по отношению к каким-либо объектам или ситуациям, и соответственно, выявить три типа оценок: позитивные, негативные и нейтральные. В данном случае исследователи использовали алгоритм SentiStrength, который специально предназначен для анализа коротких сообщений, включающих сокращения, аббревиатуры, слэнг, эмотиконы (пиктограмма, изображающая эмоцию, — ред.) и прочее.
Затем исследователи определяли — к какой из трех пропорций относится каждая конкретная совокупность твитов, предшествующая в течение часа каждому твиту пользователя из первой выборки. После чего отбирали те, которые были охарактеризованы как негативные и как позитивные. Финальной процедурой стало выявление зависимости между эмоциональной окраской твитов первой группы пользователей от предшествовавших им твитов.
Выяснилось, что если в течение часа пользователь мог видеть в своей ленте твиты на 4,34% превышающие пороговое значение негативных твитов (то есть можно сказать, что лента была более негативной), то он с высокой вероятностью также постил негативный твит.
Для позитивных твитов пропорция должна была сдвинуться на 4,5%, тогда пользователь вслед за другими также постил позитивный твит. При этом коэффициент корреляции между эмоциональной окраской предыдущих твитов (позитивной или негативной) и твита-реакции был очень высокий (R2=0,975).
Источник - Русская весна (rusnext.ru)